Research
Security News
Threat Actor Exposes Playbook for Exploiting npm to Build Blockchain-Powered Botnets
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
type-fest
Advanced tools
The type-fest package provides a collection of essential TypeScript types for use in a wide range of applications. It includes utility types, primitive types, and complex object types to enhance TypeScript's static typing capabilities.
Primitive types
Includes types like LiteralUnion, Primitive, and Promisable, which help with defining literals, primitive values, and promise-like structures.
{"isPrimitive": true}
Basic utilities
Provides utility types such as Except, Mutable, ReadonlyDeep, and many others that help manipulate and transform types in various ways.
{"isEmptyArray": array.length === 0}
Object types
Contains types for working with objects, such as Merge and RequireAtLeastOne, which assist in merging types and ensuring at least one property is present, respectively.
{"isObjectClean": Object.keys(object).length === 0 && object.constructor === Object}
Conditional types
Includes conditional types like ConditionalExcept and ConditionalKeys, which apply conditions to filter keys or properties of types.
{"isTruthy": T extends false | '' | 0 | null | undefined ? false : true}
The utility-types package provides a collection of utility types for TypeScript, similar to type-fest. It includes types for operations like picking, omitting, and readonly transformations. It is comparable to type-fest but may have a different set of utilities and slightly different implementations.
ts-essentials offers a wide range of TypeScript types, including deep readonly and writable types, as well as utility types for better type inference. It is similar to type-fest in its goal to enhance TypeScript's type system but may differ in the specific types offered and its API design.
While typesafe-actions is more focused on Redux action creators, it also provides utility types for better type safety in Redux. It is similar to type-fest in that it enhances TypeScript's type system but is more specialized for Redux-related typing.
Many of the types here should have been built-in. You can help by suggesting some of them to the TypeScript project.
Either add this package as a dependency or copy-paste the needed types. No credit required. 👌
PR welcome for additional commonly needed types and docs improvements. Read the contributing guidelines first.
$ npm install type-fest
Requires TypeScript >=3.2
import {Except} from 'type-fest';
type Foo = {
unicorn: string;
rainbow: boolean;
};
type FooWithoutRainbow = Except<Foo, 'rainbow'>;
//=> {unicorn: string}
Click the type names for complete docs.
Primitive
- Matches any primitive value.Class
- Matches a class
constructor.TypedArray
- Matches any typed array, like Uint8Array
or Float64Array
.JsonObject
- Matches a JSON object.JsonArray
- Matches a JSON array.JsonValue
- Matches any valid JSON value.ObservableLike
- Matches a value that is like an Observable.Except
- Create a type from an object type without certain keys. This is a stricter version of Omit
.Mutable
- Convert an object with readonly
keys into a mutable object. The inverse of Readonly<T>
.Merge
- Merge two types into a new type. Keys of the second type overrides keys of the first type.MergeExclusive
- Create a type that has mutually exclusive keys.RequireAtLeastOne
- Create a type that requires at least one of the given keys.RequireExactlyOne
- Create a type that requires exactly a single key of the given keys and disallows more.PartialDeep
- Create a deeply optional version of another type. Use Partial<T>
if you only need one level deep.ReadonlyDeep
- Create a deeply immutable version of an object
/Map
/Set
/Array
type. Use Readonly<T>
if you only need one level deep.LiteralUnion
- Create a union type by combining primitive types and literal types without sacrificing auto-completion in IDEs for the literal type part of the union. Workaround for Microsoft/TypeScript#29729.Promisable
- Create a type that represents either the value or the value wrapped in PromiseLike
.Opaque
- Create an opaque type.SetOptional
- Create a type that makes the given keys optional.SetRequired
- Create a type that makes the given keys required.PackageJson
- Type for npm's package.json
file.If we decline a type addition, we will make sure to document the better solution here.
Diff
and Spread
- The PR author didn't provide any real-world use-cases and the PR went stale. If you think this type is useful, provide some real-world use-cases and we might reconsider.Dictionary
- You only save a few characters (Dictionary<number>
vs Record<string, number>
) from Record
, which is more flexible and well-known. Also, you shouldn't use an object as a dictionary. We have Map
in JavaScript now.There are many advanced types most users don't know about.
Partial<T>
- Make all properties in T
optional.
interface NodeConfig {
appName: string;
port: number;
}
class NodeAppBuilder {
private configuration: NodeConfig = {
appName: 'NodeApp',
port: 3000
};
private updateConfig<Key extends keyof NodeConfig>(key: Key, value: NodeConfig[Key]) {
this.configuration[key] = value;
}
config(config: Partial<NodeConfig>) {
type NodeConfigKey = keyof NodeConfig;
for (const key of Object.keys(config) as NodeConfigKey[]) {
const updateValue = config[key];
if (updateValue === undefined) {
continue;
}
this.updateConfig(key, updateValue);
}
return this;
}
}
// `Partial<NodeConfig>`` allows us to provide only a part of the
// NodeConfig interface.
new NodeAppBuilder().config({appName: 'ToDoApp'});
Required<T>
- Make all properties in T
required.
interface ContactForm {
email?: string;
message?: string;
}
function submitContactForm(formData: Required<ContactForm>) {
// Send the form data to the server.
}
submitContactForm({
email: 'ex@mple.com',
message: 'Hi! Could you tell me more about…',
});
// TypeScript error: missing property 'message'
submitContactForm({
email: 'ex@mple.com',
});
Readonly<T>
- Make all properties in T
readonly.
enum LogLevel {
Off,
Debug,
Error,
Fatal
};
interface LoggerConfig {
name: string;
level: LogLevel;
}
class Logger {
config: Readonly<LoggerConfig>;
constructor({name, level}: LoggerConfig) {
this.config = {name, level};
Object.freeze(this.config);
}
}
const config: LoggerConfig = {
name: 'MyApp',
level: LogLevel.Debug
};
const logger = new Logger(config);
// TypeScript Error: cannot assign to read-only property.
logger.config.level = LogLevel.Error;
// We are able to edit config variable as we please.
config.level = LogLevel.Error;
Pick<T, K>
- From T
, pick a set of properties whose keys are in the union K
.
interface Article {
title: string;
thumbnail: string;
content: string;
}
// Creates new type out of the `Article` interface composed
// from the Articles' two properties: `title` and `thumbnail`.
// `ArticlePreview = {title: string; thumbnail: string}`
type ArticlePreview = Pick<Article, 'title' | 'thumbnail'>;
// Render a list of articles using only title and description.
function renderArticlePreviews(previews: ArticlePreview[]): HTMLElement {
const articles = document.createElement('div');
for (const preview of previews) {
// Append preview to the articles.
}
return articles;
}
const articles = renderArticlePreviews([
{
title: 'TypeScript tutorial!',
thumbnail: '/assets/ts.jpg'
}
]);
Record<K, T>
- Construct a type with a set of properties K
of type T
.
// Positions of employees in our company.
type MemberPosition = 'intern' | 'developer' | 'tech-lead';
// Interface describing properties of a single employee.
interface Employee {
firstName: string;
lastName: string;
yearsOfExperience: number;
}
// Create an object that has all possible `MemberPosition` values set as keys.
// Those keys will store a collection of Employees of the same position.
const team: Record<MemberPosition, Employee[]> = {
intern: [],
developer: [],
'tech-lead': [],
};
// Our team has decided to help John with his dream of becoming Software Developer.
team.intern.push({
firstName: 'John',
lastName: 'Doe',
yearsOfExperience: 0
});
// `Record` forces you to initialize all of the property keys.
// TypeScript Error: "tech-lead" property is missing
const teamEmpty: Record<MemberPosition, null> = {
intern: null,
developer: null,
};
Exclude<T, U>
- Exclude from T
those types that are assignable to U
.
interface ServerConfig {
port: null | string | number;
}
type RequestHandler = (request: Request, response: Response) => void;
// Exclude `null` type from `null | string | number`.
// In case the port is equal to `null`, we will use default value.
function getPortValue(port: Exclude<ServerConfig['port'], null>): number {
if (typeof port === 'string') {
return parseInt(port, 10);
}
return port;
}
function startServer(handler: RequestHandler, config: ServerConfig): void {
const server = require('http').createServer(handler);
const port = config.port === null ? 3000 : getPortValue(config.port);
server.listen(port);
}
Extract<T, U>
- Extract from T
those types that are assignable to U
.
declare function uniqueId(): number;
const ID = Symbol('ID');
interface Person {
[ID]: number;
name: string;
age: number;
}
// Allows changing the person data as long as the property key is of string type.
function changePersonData<
Obj extends Person,
Key extends Extract<keyof Person, string>,
Value extends Obj[Key]
> (obj: Obj, key: Key, value: Value): void {
obj[key] = value;
}
// Tiny Andrew was born.
const andrew = {
[ID]: uniqueId(),
name: 'Andrew',
age: 0,
};
// Cool, we're fine with that.
changePersonData(andrew, 'name', 'Pony');
// Goverment didn't like the fact that you wanted to change your identity.
changePersonData(andrew, ID, uniqueId());
NonNullable<T>
- Exclude null
and undefined
from T
.
strictNullChecks
set to true
. (Read more here)
type PortNumber = string | number | null;
/** Part of a class definition that is used to build a server */
class ServerBuilder {
portNumber!: NonNullable<PortNumber>;
port(this: ServerBuilder, port: PortNumber): ServerBuilder {
if (port == null) {
this.portNumber = 8000;
} else {
this.portNumber = port;
}
return this;
}
}
const serverBuilder = new ServerBuilder();
serverBuilder
.port('8000') // portNumber = '8000'
.port(null) // portNumber = 8000
.port(3000); // portNumber = 3000
// TypeScript error
serverBuilder.portNumber = null;
Parameters<T>
- Obtain the parameters of a function type in a tuple.
function shuffle(input: any[]): void {
// Mutate array randomly changing its' elements indexes.
}
function callNTimes<Fn extends (...args: any[]) => any> (func: Fn, callCount: number) {
// Type that represents the type of the received function parameters.
type FunctionParameters = Parameters<Fn>;
return function (...args: FunctionParameters) {
for (let i = 0; i < callCount; i++) {
func(...args);
}
}
}
const shuffleTwice = callNTimes(shuffle, 2);
ConstructorParameters<T>
- Obtain the parameters of a constructor function type in a tuple.
class ArticleModel {
title: string;
content?: string;
constructor(title: string) {
this.title = title;
}
}
class InstanceCache<T extends (new (...args: any[]) => any)> {
private ClassConstructor: T;
private cache: Map<string, InstanceType<T>> = new Map();
constructor (ctr: T) {
this.ClassConstructor = ctr;
}
getInstance (...args: ConstructorParameters<T>): InstanceType<T> {
const hash = this.calculateArgumentsHash(...args);
const existingInstance = this.cache.get(hash);
if (existingInstance !== undefined) {
return existingInstance;
}
return new this.ClassConstructor(...args);
}
private calculateArgumentsHash(...args: any[]): string {
// Calculate hash.
return 'hash';
}
}
const articleCache = new InstanceCache(ArticleModel);
const amazonArticle = articleCache.getInstance('Amazon forests burining!');
ReturnType<T>
– Obtain the return type of a function type.
/** Provides every element of the iterable `iter` into the `callback` function and stores the results in an array. */
function mapIter<
Elem,
Func extends (elem: Elem) => any,
Ret extends ReturnType<Func>
>(iter: Iterable<Elem>, callback: Func): Ret[] {
const mapped: Ret[] = [];
for (const elem of iter) {
mapped.push(callback(elem));
}
return mapped;
}
const setObject: Set<string> = new Set();
const mapObject: Map<number, string> = new Map();
mapIter(setObject, (value: string) => value.indexOf('Foo')); // number[]
mapIter(mapObject, ([key, value]: [number, string]) => {
return key % 2 === 0 ? value : 'Odd';
}); // string[]
InstanceType<T>
– Obtain the instance type of a constructor function type.
class IdleService {
doNothing (): void {}
}
class News {
title: string;
content: string;
constructor(title: string, content: string) {
this.title = title;
this.content = content;
}
}
const instanceCounter: Map<Function, number> = new Map();
interface Constructor {
new(...args: any[]): any;
}
// Keep track how many instances of `Constr` constructor have been created.
function getInstance<
Constr extends Constructor,
Args extends ConstructorParameters<Constr>
>(constructor: Constr, ...args: Args): InstanceType<Constr> {
let count = instanceCounter.get(constructor) || 0;
const instance = new constructor(...args);
instanceCounter.set(constructor, count + 1);
console.log(`Created ${count + 1} instances of ${Constr.name} class`);
return instance;
}
const idleService = getInstance(IdleService);
// Will log: `Created 1 instances of IdleService class`
const newsEntry = getInstance(News, 'New ECMAScript proposals!', 'Last month...');
// Will log: `Created 1 instances of News class`
Omit<T, K>
– Constructs a type by picking all properties from T and then removing K.
interface Animal {
imageUrl: string;
species: string;
images: string[];
paragraphs: string[];
}
// Creates new type with all properties of the `Animal` interface
// except 'images' and 'paragraphs' properties. We can use this
// type to render small hover tooltip for a wiki entry list.
type AnimalShortInfo = Omit<Animal, 'images' | 'paragraphs'>;
function renderAnimalHoverInfo (animals: AnimalShortInfo[]): HTMLElement {
const container = document.createElement('div');
// Internal implementation.
return container;
}
You can find some examples in the TypeScript docs.
(MIT OR CC0-1.0)
FAQs
A collection of essential TypeScript types
The npm package type-fest receives a total of 159,071,389 weekly downloads. As such, type-fest popularity was classified as popular.
We found that type-fest demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
Security News
NVD’s backlog surpasses 20,000 CVEs as analysis slows and NIST announces new system updates to address ongoing delays.
Security News
Research
A malicious npm package disguised as a WhatsApp client is exploiting authentication flows with a remote kill switch to exfiltrate data and destroy files.